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AbslracL We study the manifold of fixed p i n t s  of lhe generalized weak-graph trans- 
formation on lattices of wen mordination number for the most general vertex model 
respecting spin-flip q m m e t y .  We conjecture these fixed points to k the loci of phase 
transitions. As an =ample, we turn to coordination number six and find phase transitions 
in certain regions of the manifold of fixed pints:  first by investigating a gauge-invariant 
king model on a three-dimensional sc lattice with the help of Monte-Carla simulations; 
and second for the ice-type zero-field ferroelectric model, in which the transition ktween 
frozen ordered and disordered phase is of fin1 order. 

1. Introduction 

In statistical mechanics the goal is to calculate expectation values of some observables, 
especially in the neighbourhood of a phase transition, where the critical exponents 
of the model under investigation are defined. Exact results for these properties 
of a statistical mechanics model can be obtained if one can solve the model (e.g. 
diagonalize the transfer matrix) in the thermodynamic limit. Since models have to 
h i f i i  certain restrictive reiations (e.g. Yang-Baxter equationsj to be accessibie by this 
program, the class of such models is very small. Computer simulations of a model for 
various temperatures near the expected phase transition are widely used to overcome 
this difficulty. However, the better the exact transition temperature (defined only 
in the infinite volume limit) is known, the better the desired information may be 
extracted from the data. 

pletely, one may think, roughly speaking, of the following concept: define a uansfor- 
mation that maps points in the parameter space of the model referring to physically 
similar macroscopic states onto each other. If phase tramition points do not find 
a 'similar' point to map on, they will be fured points under the transformation. In- 
deed, half a century ago, Kramers and Mnnier  [SI realized this program for the 
square-lattice king model and detectcd its transition temperature using a duality 
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transformation, which maps in a special manner, the high-temperature behaviour of a 
model to the low-temperature one. Later on, this device was generalized, for example 
to gauge models [3, 4, 15). Usually, there exists one self-dual temperature, defined 
as the k e d  point of the transformation. If one knows (or assumes) that the model 
undergoes one, and only one, phase transition with respect to the tuned temperature 
then the transition must occur at the self-dual temperature. Some years later, a trans- 
formation for vertex models was constructed [12, 161, which shared some properties 
with duality transformations, and indeed covered some of the latter [16]. Recently 
[18], a renewed interest in this (generalized) weak-graph transformation has focused 
on isotropic vertex models, which contain the Ising model in an external field as a 
special case. 

In this paper we will discuss the weak-graph transformation on regular lattices with 
even coordination number for vertex models which respect a completely different and 
far less restrictive symmetry. We obtain the k e d  points of the transformation and 
investigate for some models whether there are phase transitions at the k e d  points. 
The paper is organized as follows. Section 2 is devoted to a brief definition of the 
vertex model and introduction of notations. In section 3 we derive the weak-graph 
transformation and its main properties, and propose a calculation method for general 
coordination numbers of the underlying lattice. As an example, we continue the 
calculations to dcfinitc results for coordination number six in section 4. Sections 5 
and 6 present applications of these results. In the former we discuss a gauge-like king 
model on a three-dimensional SC lattice. The latter deals with the ice-type, zero-field 
ferroelectric model and contains a rigorous proof for first-order phase transitions in 
this model. Section 7 is reserved for a discussion and outlook. 

2. Definition of the model 

This paper deals with vertex models on six-coordinated lattices ( q  = 6) with periodic 
boundaly conditions. However, the method used [SI is, in principle, applicable to 
lattices of any even coordination number q.  The dynamical variables on the lattice 
bonds are allowed to take two values: a = +l. The statistical weight w ( a )  of a 
vertex depends on q spins a := ( a l , .  . . ,al) on the bonds that make up the vertex. 
The only assumption made on the model throughout this paper is the symmetry of 
the vertex weights with respect to flipping all spins 

w ( - a l , .  . . , - a q )  = w ( a l , .  . . , a q ) .  

This reduces the number of independent model parameters to 21-l. 

3. The method used 

The generalized weak-graph rransformation [12, 161 for q = 6 

w" >. . . ,  = vo,*,".vo~m~w(al,. . ' ,a~)(v-l)~,o,. 
* , ! . . . , *e  

.. 
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is a (multi-)linear mapping in parameter space which leaves the partition function 

invariant. Here, V may he any regular (2 x 2) matrix. 'Ib make V easily invertible 
(namely by transposition), we take it to be an orthogonal matrix. The transformation 
then has, for general q, the symmetric form 

w'(B1,. . . > P J  = v@,=$ . . . V p q w q w ( a , , .  , . , a n ) .  (4) 
oli...!=, 

As we want the transformation to he similar to duality transformations, which are 
involutions, we take det(V) to be -1 rather than +1 [16]. From now on, V will be 
parametrized by a (real) parameter y 

In this and the next section we obtain, for the model defined in the previous 
section, the manifold of those points which remain f i ed  under the weak-graph trans- 
formation. This manifold will turn out to he independent of the transformation- 
parameter y, i.e. the same for all V we consider (except for V = 1). The eigenvectors 
of V (  y)  are easily obtained to he [SI 

corresponding to eigenvalues z = +1 and z = -1 respectively. The upper (lower) 
component of 1L will corrcspond to a = + l ( - l j  for convenience. The transfor- 
mation (4) may be viewed [S, 61 as a q-fold tensor product W := V @ . . . c3 V of 
V matrices. Every tensor product of eigenvectors of V helonging to eigenvalues 
q,. . . , €  q 

q E )  := $ ( E , )  8 . .  . @  +(.,I (7) 

is an eigenvector of W corresponding to the eigenvalue A ( € )  = nP=, E, = (-l)n-(f), 
where . - (e )  denotes the number of negative components in E, i.e. the number of 
ei = -1. In conversion to the eigenvector property, the tensor products (7) form 
bases for the (two) eigenspaces of W .  The space of vertex weight vectors w invariant 
under the weak-graph transformation is thus spanned hy all 29-l eigenvectors \ k ( e )  
belonging to the eigenvalue A ( € )  = +l .  Because of the orthogonality property of 
the eigenvectors this space is equivalently characterized by the 29-l eigenvectors 
* ( E )  with eigenvalue A(€)  = -1 .  These (normal vectors) are @ ( E )  with E E E,  := 
{ E I ~ : = ,  E ,  = -l), i.e. they are characterized by an odd number .-(e) of negative 
€,'S. The normal vectors will he used to identify the space of fvted points for all 
parameter values y + 0 (y = 0 yields a trivial mapping). 

The normal vectors make up a system of homogeneous linear equations for the 
vertex weights: Aw = 0. Using (6) and (7) one obtains for the coefficients 

As,- := Q'-(e) = y"+(") n zc, E €  E,.  (8) 
i .0.=-1 



3136 M Miinier et a1 

N o  rows of the matrix A corresponding to row indices E,  E' will be called a contple- 
mentary pair, if ei = -e: for all i = 1, . . . , q,  i.e. if the row indices differ in all places 
from one another. The system of equations is now transformed by summing and 
subtracting respectively the two equations of each complementary pair. The index set 
for E will be half of E,. The coefficients read explicitly 

= Y " + ( ~ )  I A:- := As,- (9) (2, z-  zk z-"+').  

Here k := n+(~ ln - (a ) )  and I := n - ( ~ l n - ( a ) )  = n - ( a ) - k  denote the number of 
positive and negative t i ' s  respectively amongst those from places i = 1, . , . , q which 
have negative ai. Any power of z6 can be linearized 

z ,k=Pk(YZ)+Qk(YZ)zZ,  k E { 0 , 1 , 2 , . . . )  (10) 

with polynomials Pk, Q k  of Lk/2] th order as coefficients. This can be shown by 
induction using the defintion (6) of zt. The polynomials are defined recursively: 
P a = 1 , Q , = 0 , P k = y Z Q k ~ , , Q , = P k ~ , - 2 Q k ~ , .  U s i n g z + + z - = - 2 a n d  
z+z- = -yz one simplifies the expression in (9) 

(11) 
2[pk(Q,+i + Qr) - Qk(pi+i + Pi11 
(2- - z+)[PkQi - Q~PII. 

Because the system of linear equations under consideration is a homogeneous one, 
the a-independent factors 2 and z-  - z+ f 0 may be cancelled and the second set 
of equations may be subtracted from the first: 

Note, that the coefficients for the fixed-point conditions have become just polynomials 
in y. Any ou'urrence of te has vanished. 

4. The manifold of fixed points in case of q= 6 

Now turn to the case q = 6, i.e. the general (29 = 64)-vertex model and consider 
A*w = 0. Using spin-flip symmetry (l), we performed linear transformations with 
the rows of the matrices A t  and A- and were able to simplify them in such a way, 
that the fixed-point equations become manageable. The results are in the following, 
whereas details of the calculations will be published elsewhere. 

The vertex weights w ( a )  will be denoted by a ,  b , c , d  if they contain n- (a )  = 
0 , 1 , 2 , 3  negative arguments a;, respectively. Their position will augment the char- 
acter by one or more indices: 

a = U(++ + + ++) 

b, = w(+ ...+ I+ ...+) 
(13) 

CT3 Csr -a(+... - +: + ...+: +...+) r <  s 
L 

d,,, = w(+ ...+ :+ ...+ :+ . . .+ -  +...+ ) T < s < t 
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where r , s , t  E { l , .  . . , G ) .  The remaining vertex weights (with n-(a) > 3) are 
determined by spin-flip symmetry (l), which, in addition, leaves vertex weights d 
corresponding to half of the indicated indices independent, only: d,,, = d,,, if 
{ T ,  s, 1,  U ,  U ,  w }  = 1 1 , .  . . , G } .  Using this terminology, the transformed equations 
At reduce to 

(yz - i ) b ,  = 0 b, = bi = -d,,, i , ~ , s , t € { l ,  ..., 6 )  r < s < t  

(14) 

so that, for non-negative vertex weights, all non-vanishing weights have to satisfy the 
constraint 

6 nai = 1 .  
i=1 

The remaining 16 independent weights of the spin-flip symmetric (now 32-)vertex 
model on the manifold of fured points are restricted by the transformed equations A- 

a =  c , . ~  f o r a 1 1 r c { l , . . . , ~ }  (16) 
* : s # 7  

%* = C CP5 for all F c {l,. . . , G )  with IF1 = 3 (17) 
r , a E F : 7 < s  7 , s E F ’ : V j S  

where F’ = { 1 , .  . , , G)\F is the set complementary to F. By adding appropriate 
equations from (16), one can show that the equations in (17) are linearly dependent 
on (16) and, thus, can be cancelled. The six equations (16) are linearly indepen- 
dent. Thus the manifold of fxed points is ten-dimensional, described by (16). It is 
independent of y, i.e. the same for all matrices V we considered. 

5. An equivalent king model 

For the general (q = 4) 16-vertex model (VM) one finds a manifold of k e d  points 
which is easily seen to be identical [5] with the critical manifold of Baxter’s 8VM [l]. 
The subject of the following sections will be the coincidence of the corresponding 
manifolds in the spin-flip symmetric ( q  = 6) 32VM respecting the constraint (15), 
which was introduced in the previous sections. Now, when thinking of the 32VM as a 
generalization of the two-dimensional SVM, it is natural to ask whether the former can 
be formulated in terms of spins on a three-dimensional lattice, quite by analogy with 
the situation for the latter in two dimensions [7, 171. Indeed, we find by generalizing 
the methods of Kadanoff and Wegner [7], the following correspondence 

2 I (  Ii- ‘, 1 K ? . ,  ‘ I  I { . - ,  ‘ I  li.: 2I 1 L i )  = combinatorial factor x ZVM(a; cvs)  (18) 

where 2, denotes the partition function of an Ising-type model with 15 interaction 
strengths K-,K-. ICi3, K i j ( i  < j = 1 , .  . . , 3 )  and L i ( i  = I , .  . . , 3 ) ,  which are 

I J  ‘ I  
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13 

Figure 1. ?he four o-spins on edges around lhe plaquette P,, yielding the product-spin 
m, = olo,o*o,. 

unique functions of the 16-vertex weights a ,  cy.,(. < s = 1,. . . , 6 )  of the corre- 
sponding vertex model (see the following). 

7b see this, place spins (T = f l  at the edges of a three-dimensional sc lattice, as 
in figure 1, and assume periodic boundary conditions. Now, instead of dealing with 
these o-spins, we construct product spins, which are living on plaquettes (faces) of 
the lattice. Denoting the plaquettes of a cube by Pi as is indicated in figure 1, we 
introduce the product spins as 

- - 
a i =  noI i = l ,  . . .)  3 , 1 ,  . . . ,  3 (19) 

IEP, 

where an index i (i) refers to the plaquette orthogonal to the lattice direction i on 
the front (back) of the cube, as seen in a fixed orientation of the lattice direction. 
The new a-variables are again spins with d u e s  5 1 .  Moreover, we notice that the 
product of all plaquette spins situated on the six plaquettes of a cube satisfy the 
relation 

f i a p i  = 1. (20) 
i = 1  

The most general Hamiltonian (up to a zero of energy), which c a n  be written as a 
sum over cubes and is a-spin-flip symmetric, contains interactions between nearest 
and next-nearest neighbour spins of the plaquette-type 
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This model contains six-spin interactions between the original u-spins round every 
two adjacent plaquettes of a cube (interaction strengths K )  and, moreover, eight- 
spin interactions between uepins on two opposite plaquettes (interaction strengths 
L). The partition function is given by 

We then argue just as in the two-dimensional case studied in [7] and conclude that 
(18) holds, provided the vertex weights respecting (20) are taken as 

1 3 

+ C L i a S a i  . 
i =1  

The 32VM with spin-flip symmetry has, thus, been shown to be equivalent to the 
Ising-type model (19) and (21) of spins U on the edges of a three-dimensional sc 
lattice. 

It is interesting to note that in the case of isotropic couplings, the vertex weights 
are related to the two remaining coupling constants IC and L by 

a = exp(3L + 12K) 

The six equations (16), which define a manifold of fixed pints, now reduce to a 
single one: sinh(8IC) = 2exp(-4L - 4 K ) .  We conjecture this line in the ( l i , L ) -  
plane to represent the exact loci of phase transitions for the isotropic model. Monte 
Carlo simulations performed by us support this conjecture. The internal energy and 
the magnetization both seem to have a discontinuity at the expected couplings. Thus 
the Ising model studied above undergoes a first-order phase transition at these points. 

6. Proof of a first-order phase transition in the ice rule sector 

In the last sections we investigated a 32VM with special spin-Hip symmetric vertex- 
weights w(a7, .  . , , a3), where the mriables a = k l  satisfy the constraint (20). Now 
we choose another point of view and interpret the variables as arrow-spins associated 
with the six edges round a vertex, as in figure 2. We have generalized the usual 
convention practised in two-dimensional ice-type models that an arrow pointing in 
one of the three lattice directions i = 1 ,. . . , 3  is related to a variable +1 (-I 
otherwise). 

Up to now we have dealt with vertex models satisfying the more general constraint, 
which allows all configurations with an odd number of arrows into and out of cach 
site of the lattice, in mathematical terms formulated in (20). In this section we 
restrict ourselves to a Ii-DP-type ice rule, where at each vertex of the lattice, there 
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'3 
(6) ( h )  

Figure 2. Two examples of arrow mnfigurations (mi, e$, 05, ml,m2,ag) intmduced 
in the text, mrresponding lo weights (0) a = w(+ + + + ++) and (b)  cz, = 
U(+ - + - ++). ?hey b t h  mspect the generalized ice rule as defined in the text. 

are three amom in and three arrows out. Note that this rule is adapted to hydrogen- 
bonded cubic clystals and ensures local electrical neutrality. The arrow configurations 
colliding with the ice rule are those with weights cij and c-, which we have now to 
set to zero. If we interpret each arrow as carrying an electric dipole moment, we can 
divide the remaining non-zero weights into two classes. In one class we assemble all 
configurations with a net dipole pointing along a diagonal direction, i.e. the vertices 
a and csi, associated with dipoles pointing parallel to the directions d and d - 2ei, 
respectively. Here d = ( 1 , 1 , 1 )  and e i  is the ith unit vector. In the second class 
we group together all configurations which have a net dipole parallel to the axial 
directions el;, i.e. the vertices c;, with { i , j ,  k} = {1 ,2 ,3} ,  Because axial dipoles are 
associated with two weights each, we demand qj = qi for i # j. 

Now we proceed just as in the theory of the various two-dimensional ferroelectric 
models studied in the literature [llj. We pastolare an isotropic c-axis which coincides 
with any one of the eight allowed dipole axes (axial or diagonal). If the configuration 
with a net dipole pointing along the crystal axis is given the lowest energy, then at 
low temperatures there is a tendency for a spontaneous polarization, thus resulting 
in a (zero-field) ferroelectric model. In what follows, we choose a c-axis parallel to 
d and, thus, favour the weight a. The most general energy assignment then is 

:a 

a = l  

c. a a  =exp( -pc j )=exp( -K, )  j =  1 ,  . . . ,  3 (25) 
e. = c. = exp(-Ofil;) = e x p ( - L k )  { i , j , k }  = { 1 , 2 , 3 }  11 a i  

where e j , f i j  > O ( j  = 1 , 2 , 3 )  are anisotropy parameters of the model 19, 13, 141. 
The parameters It7 and L must not be confused with the couplings of the king model 
I I I L I U U " ~ "  111 ",G p~*'"uJ - b L I " I I .  

Our aim in this section is to prove that the critical manifold of the K D P  model 
defined in (25) coincides with the manifold of rwed points, which is now given by (cf 

A*-,.A..-",I :" *I.- ".n..:,..." "",.+Z,... 

(16)) 

I = exp(- ri,) + e x p - L i )  j = I,. . . , 3 .  (26) 
i : i#j  

On this manifold we use the high-temperature expansion [lo] 
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where the sum is over all arrow configurations, the second product is over all vertices 
n of the lattice, and the first product is over all edges (mn).  The wriable 
specifies the vertex configuration at vertex n: w(<,) = exp(-Kj) ,exp(-Lk) , l  or 
0, depending on whether the vertex configuration <, has been assigned an energy 
ej,pk,O or does not respect the ice rule. Finally, y,, is a characteristic function 
taking on the value +1 (-1) if the arrow on the edge (mn)  has a positive (negative) 
projection on to the c-axis. We expand the first product in (27) and think of each 
term as representing a graph of lines on the lattice, where every factor y,,y,, 
corresponds to a line between vertices nL and n. The partition function can be 
written as 

where Tn denotes the configuration of lines radiating from vertex n, and 

b(r,J = C w ( F , . )  n YTL",(C",). 
F .  mErn 

The crucial point then is that all weights b with an excess of f2 lines in the c-direction 
vanish on the manifold of Iixed points (26). This enables the free energy and the 
entropy per site to be calculated in the thermodynamic limit N i 00 on the manifold 
(26), on which we define the temperature T, using (25) with k e d  energies tj , L L ~ ,  

Now it is an easy step to the final conclusion that the manifold (26) is a critical 
manifold. 'Ib this end we note that the ground state is doubly degenerate and its 
energy equal to zero by (25), thus F I N  = S I N  = 0 at T = 0 in the thermodynamic 
limit. Combining with (30) and the monotony property BFIi3T ze -S < 0, the 
free energy and the entropy must vanish on the whole interval 0 < T < T,. This 
establishes the frozen order in the system below T,. S I N  becomes discontinuous at 
T, and shows a finite jump according to (31), if at least one of the energies ej  or jAk 

is positive. This confirms that a first-order phase transition occurs on (26), and that, 
at least in the ice rule sector, the Iixed points of the 32VM are phase transition points. 

7. Conclusion and outlook 

For general spin-flip symmetric (two-state) vertex models on lattices of even wordi- 
nation number we have investigated the generalized weak-graph transformation. The 
manifold of k e d  points, obtained in the case of a coordination number 6, is charac- 
terized by two types of conditions. The first one demands all vertex weights with an  
odd number of arguments +1 (-1) to vanish, thus yielding a 32-vertex model. The 
second one consists of six equations, linear in the 16-vertex weights remaining. As an 
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application, we discussed two models contained in the 32-vertex model. The first one 
is a model of Ising spins on the edges of the three-dimensional sc lattice, coupled 
by gauge-invariant six- and eight-spin interactions. In the case of isotropic couplings, 
we find a line of fixed points, which, according to Monte-Carlo simulations [SI, is 
a line of phase transitions. The second model discussed is the ice-type, zero-field 
ferroelectric model on six-coordinated lattices. Again, the fixed points specialized to 
this case coincide with points of first-order phase transitions. 

of parameter-dependent critical exponents [l]. Since the spin-flip symmetric vertex 
model investigated in this paper is a natural generalization of the former model to 
qcoordinated lattices, one is led to ask the question whether the loss of universality 
will also occur in higher dimensions. Unfortunately, the methods used in this paper 
are not able to yield critical indices, so that the question can only be answered with 
the help of numerical methods or with more elaborate theoretical means. There is, 
however, a hint against the breakdown of universality in lattices with q 6: the three- 
dimensional Ashkin-Teller model on a sc lattice has been investigated by Ditzian cl  
a1 [2] and is found to be a model with universal properties, quite in contrast to the 
Ashkin-Rller model on the square lattice which can be interpreted as a staggered 
eight-vertex model. This fact suggests that the third dimension restores universality 
which is broken in two dimensions. 

One of the surprising properties of Raxter's eight-verte.x mode.! & the OccfiIreflce 
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